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Why Use UNIX? 

• Files unmanageably large  

• Analysis tools only available for UNIX 

• Only way to access high performance 
computing resources (HPC) at NIEHS 



HPC Resources at NIEHS 

• Server (wine) 

– 32 CPU's 

– 512 GB Memory 

• Storage 

– 550 TB 

– Parallel File System 

• Designed to be shared by a large number of 
simultaneous users 



How to Access HPC Resources 

• An account is created for you when you first 
receive nextgen sequencing data from NISC 

• Send an email to NIEHS Scientific Computing 
Support (scs@niehs.nih.gov) 

– Request an account on the wine server 

– Include your NIH username and Lab Group 

mailto:scs@niehs.nih.gov


Important Notes 

• All file and command names are case sensitive 
– "test.txt" and "TEST.txt" can be two separate files 

stored in the same directory 

• Using spaces in file names is discouraged 
– Use underscores or CamelCase instead (e.g. 

"file_name" or "fileName" instead of "file name") 

• There is no "undo" 
– Files overwritten or modified cannot be restored to 

their original state  

• There is no "Trash" or "Recycle Bin" 
– File deletion is permanent 



The UNIX Shell (bash) 

• Primary user interface for UNIX operating 
systems 

• Allows editing of commands 

• Autocompletes command or file names (tab) 

• Allows use of wildcard character (*) to match 
one or more file names 

• Manages command history 
– Use up and down arrows to cycle through 

previously run commands 

 



Navigating the UNIX File System 

• pwd – Prints the current "working" directory 
– "/" is the root directory, similar to C: in Windows 
– UNIX systems use forward slashes "/" rather than back slashes to 

separate directory names 
– Your "home directory" can also be accessed using the Finder 

• mkdir unix_class – Creates a new directory called "unix_class" 
– The name of the directory is passed to mkdir as an argument, 

commands may take zero arguments, such as pwd, or many 

• cd unix_class – Changes the current directory to "unix_class" 
• cd .. – Shifts the current directory one level up 

– ".." always refers to the directory one level above the current directory 
– "." always refers to the current directory 

• cd unix_class – Return to the "unix_class" directory 



File Management 

• cp ../Desktop/unix_class.tar.gz . – Copies the file to the 
current directory 

• ls – Lists the files in the current directory 
• cp unix_class.tar.gz temp.tar.gz – Makes a copy of the 

file named "temp.tar.gz" 
• mkdir tempdir 
• mv temp.tar.gz tempdir – Move temp.tar.gz to the new 

directory 
• cd tempdir 
• mv temp.tar.gz temporary.tar.gz – Change the name of 

temp.tar.gz to temporary.tar.gz 
 
 



File Management 

• cd .. 
• ls -l – Lists the files in the current directory with 

additional information 
– "-l" is an option or parameter passed to ls that 

modifies its behavior 
– Other useful parameters for ls include: 

• -t:  Sort by date modified 
• -S:  Sort by file size 
• -R:  List files in subdirectories as well 

– Output includes file permissions, file owner, file 
group, file size, and date modified 



File Permissions 

d  rwx   r-x    - - -  { { { 

Owner Group Others 

• r – Read Files/List Files in a Directory 
• w – Modify Files/Write New Files to a Directory 
• x – Execute a Program or Script/Run Commands within a Directory 



Deleting Files 

• cd tempdir 

• rm temporary.tar.gz – Delete the file 
– There is no "Trash" or "Recycle Bin" on UNIX 

systems, file deleted using rm are deleted 
permanently 

• cd .. 

• rmdir tempdir – Delete the temporary 
directory 
– Directories must be empty prior to deletion 

 



Working with Archives 

• gunzip unix_class.tar.gz – Decompresses the 
"tarball" to "unix_class.tar" 
– "unzip" decompresses ".zip" files 

• tar -xvf unix_class.tar – Unpacks the files 
contained in "unix_class.tar" 
– x, v, and f are separate parameters, equivalent to 

-x -v -f unix_class.tar 

– x indicates files are to be extracted from the archive, v 
tells tar to list the files as they are unpacked, and f is 
used to tell tar the name of the file to unpack 



Working with Text Files 

• cat sample1_peaks.bed – Prints entire file to shell 
• cat sample1_peaks.bed|more – Prints the file, one screen 

at a time 
– The pipe (|) indicates that the output of "cat" should be 

directed to the input of "more" 
– Scroll with up and down arrows, jump one screen at a time with 

space bar, quit by pressing "q" 

• head sample1_peaks.bed – Prints the first 10 lines of file 
• head -n 100 sample1_peaks.bed – Prints the first 100 lines 

of file 
• tail sample1_peaks.bed – Prints the last 10 lines of file 
• head -n 100 sample1_peaks.bed|tail -n 1 – Prints line 100 

only 
 



Working with Text Files 

• cat sample1_peaks.bed > temp.bed – Prints the entire files and 
stores the output in temp.bed, essentially copying the file 
– Similar to the pipe, the ">" indicates that the output of "cat" should be 

directed to the file "temp.bed" 

• diff sample1_peaks.bed temp.bed – Compares the contents of two 
files 

• cat sample1_peaks.bed >> temp.bed – Appends the output of "cat" 
to temp.bed, rather than overwriting it 

• diff sample1_peaks.bed temp.bed 
– The files are no longer identical 

• sort -k1,1 -k2,2n temp.bed > sort.bed – Sorts temp.bed by the first 
column alphabetically, the by the second column numerically 



Managing Jobs 

• Use Ctrl-C to Interrupt a Job 

• Use Ctrl-Z to Suspend a Job 

• A suspended job can be restarted by running 
"fg" 

• A suspended job can be placed in the 
background by running "bg" 

– Additional commands can be run while a job is 
running in the background 



Managing Jobs 

• Append a "&" to a command to start it in the 
background 

• Use "ps" to view current jobs 
– All jobs have unique process ID's, displayed in the first 

column of the output 

• Use "kill" followed by the process ID to end 
problematic jobs 
– Example:  kill 5109 

• Use "top" to view all jobs running on the server 
– Quit top with “q” 



Working with Text Files 

• uniq sort.bed > unique.bed – Removes duplicate lines from 
sort.bed 

• diff sample1_peaks.bed unique.bed – The files are now 
identical 

• wc -l *.bed – Count the number of lines in each BED file 
• cut -f 1 sample1_peaks.bed > sample1_peaks_chrs.txt – 

Print only the first field of each line 
• cut -f 2 sample1_peaks.bed > sample1_peaks_starts.txt 
• paste sample1_peaks_chrs.txt sample1_peaks_starts.txt 

sample1_peaks_starts.txt > joined.txt – Join the extracted 
columns into a new three column BED file containing peak 
starts rather than intervals 



Working with Text Files 

• grep "chr3" sample1_peaks.bed – Search 
through the BED file, print all lines that 
contain "chr3" 

– grep is a very fast and powerful search tool that is 
highly configurable 

• man grep – Displays the manual page for the 
grep command 

 



Practical Examples 

• Merge Two BED Files, Retaining Only Unique 
Peak Locations: 
– cat sample*_peaks.bed|sort 

-k1,1 -k2,2n|uniq > merged.bed & 

• Find Peak Locations Common to Two BED 
Files: 
– cat sample*_peaks.bed|sort 

-k1,1 –k2,2n|uniq -d > common.bed 

– wc –l *.bed 

 



Wrapping Up 

• history > unix_class.txt – Stores a log of all the 
commands run to the file unix_class.txt 

• exit – Log out of the server 

 



Server Etiquette 

• When you first log in 

– Run "who" to see how crowded the server is 

– Run "top" to see what jobs are currently running 

• Do not use an excessive number of CPU's at 
one time 

• Keep an eye on the amount of memory your 
jobs are using 



Storage Organization 

• Home directories can be found in 
/ddn/gs1/home 

• Lab Group directories can be found in 
/ddn/gs1/project/nextgen/post 
– Nextgen sequencing data stored in this location 

• Analysis tools can be found in /biotools 
– If an open source tool you need has not been 

installed, contact NIEHS Scientific Computing 
Support (scs@niehs.nih.gov) 

 



What is Perl? 

• General purpose programming/scripting 
language 

• Very useful and fast for processing text 

• Can be run as a script saved in a file, or 
directly from the command line 

• Typically pre-installed in UNIX 
systems 



One Liners 

• perl -e '[perl code]' 

• Examples: 
• perl -e 'print "hello world\n";' 

• perl -e '$sum=10*((12/3)+2); print "$sum\n";' 

• Additional Parameters: 
– n:  Loop through file line by line 

– p:  Loop through file line by line and print 

– a:  Split each line by whitespace 

– F'[string]':  Split line by character rather than 
whitespace 

 



Perl Variables 

• Scalars 
– Names begin with $ 

– Hold numbers or strings 

• Arrays/Lists 
– Names begin with @ 

– Hold multiple scalars 

• Hashes 
– Names begin with % 

– Hold multiple pairs of scalars 



Useful One Liner Template 

• perl -ane 'print "$F[0]\t$F[1]\t...$F[n]\n";' in > out 

• Special Variable 
– "@F" stores the current line separated into fields or 

columns by whitespace 
• $F[0], $F[1], $F[2], etc. allow access to individual fields 

• Print only selected fields from a multi-column input 
file, rearrange columns 
– Can be used similarly to "cut" and "paste", without the 

need for intermediate files 

– perl -ane 'print "$F[0]\t$F[1]\t$F[1]\n";' 
sample1_peaks.bed > sample1_points.bed 

 

 



The if Statement 

• if(condition) { perl code }:  only run the code if the 
condition is true 

• Test Operators 
– eq|ne: equal and not equal, for use with strings 
– ==|!=:  equal and not equal, for use with numbers 
– <|>|<=|>=:  less than, greater than, less than or equal 

to, greater than or equal to 

• else { perl code }:  only run the code if the 
condition is false 

• Example 
– perl -e 'if(1==2) { print "yes\n"; } else { print "no\n"; }' 

 



Useful One Liner Template 

• perl -ane 'if(X) { print Y; } else { print Z; }' in > out  

• Prints different output depending on the 
outcome of condition "X" 

• Special Variable 
– "$_" stores the current line when looping through a 

file 

• Example: extract all peaks intervals, 200 nt or 
shorter, from a BED file 
– perl -ane 'if(($F[2]-$F[1])<=200) { print $_; }' 

sample1_peaks.bed > sample1_peaks_max200nt.bed 

 



BEGIN, END, and foreach 

• BEGIN { perl code }:  run this code once before 
the first line of the file is read 

• END { perl code }:  run this code once after the 
last line of the file is read 

• foreach(@array) { perl code }:  run the code on 
each element stored in the array 

– $_ stores the current array element 

 



Useful One Liner Template 

• perl -ane '$hash{$key}++;  
END {  
 foreach(keys(%hash)) { 
  print "$_\t$hash{$_}\n"; 
 } 
}' in > out 

• Counts the number of times each "$key" is encountered, then 
prints the results 

• Example: Determine the distribution of peak sizes in a BED file 
– perl -ane '$table{$F[2]-$F[1]}++; 

END { 
  foreach(keys(%table)) { 
   print "$_\t$table{$_}\n"; 
  } 
}' sample1_peaks.bed|sort -k1,1n > sample1_peaks_distribution.txt 



Additional Resources 



Appendix 



Logging into wine (Windows) 

• Download puTTY SSH client, and save to your 
Desktop 
– http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe 

• Leave all settings at their 
default values 

• Type "wine" into the 
Host Name field 

• Click Open 

 

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe


Logging into wine (Mac) 

• In the Finder, navigate to Macintosh HD -> 
Applications -> Utilities 

• Drag "Terminal" to the Dock and Click to Run 

• Type "ssh wine" 

• When prompted, 
type "yes" 



Transferring Files (Windows) 

• Open the Start Menu 

• Type \\wine in the 
"Search programs and 
files" field 

//wine
//wine
//wine


Transferring Files (Windows) 

• Create, Delete, Copy, and Move files as you 
normally would 



Transferring Files (Mac) 

• Select "Connect to Server" 
from "Go" menu 
 

• Type "smb://wine" into 
the Server Address field, 
click Connect 
 

• Select a folder to mount, 
Create, Copy, Delete, and 
Move files normally  



Changing File Permissions 

• File permissions can be modified using "chmod" 
• Example 

– mkdir temp 
– chmod u-w temp – Disables user (owner) write 

permissions in tempdir 
• "u" refers to owner permissions, "g" refers to group permissions, 

"o" refers to other, and "a" refers to all three 
• To enable permissions, use "+" instead of "-" 

– ls > temp/test.txt 
• Results in Permission Denied error message 

– chmod u+w temp – Re-enables owner write permissions 
– ls > temp/test.txt 

• Results in creation of test.txt 

 
 



Managing Jobs 

• Run jobs expected to take a very long time 
using "nohup" 

– This allows the job to run even if you log out of 
the server 

– Example: nohup grep "chr3" sample1_peaks.bed > 
sample1_peaks_chr3.bed 

• Use "disown" to "nohup" a job after it has 
been started 
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